Spectroscopic quadrupole moments of high-spin isomers in ¹⁹³Pb

D.L. Balabanski^{1,2}, M. Ionescu-Bujor^{3,a}, A. Iordachescu³, D. Bazzacco⁴, F. Brandolini⁴, D. Bucurescu³, S. Chmel⁵, M. Danchev², M. De Poli⁶, G. Georgiev⁷, H. Haas⁸, H. Hübel⁵, N. Marginean^{3,6}, R. Menegazzo⁴, G. Neyens¹, P. Pavan⁴, G. Rainovski^{2,9}, C. Rossi Alvarez⁴, C.A. Ur^{3,4}, K. Vyvey¹, and S. Frauendorf^{10,11}

¹ IKS, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

² Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria

³ National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest, Romania

⁴ Dipartimento di Fisica dell'Università di Padova and INFN, Sezione di Padova, Padova, Italy

⁵ ISKP, Universität Bonn, D-53115 Bonn, Germany

- ⁶ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
- ⁷ Grand Accélérateur National d'Ions Lourds, F-14076 Caen Cedex 5, France
- ⁸ Hahn-Meitner Institut, Bereich Festkorperphysik, D-14109 Berlin, Germany
- ⁹ Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK
- ¹⁰ Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden, Germany
- ¹¹ Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

Received: 4 November 2002 /

Published online: 2 March 2004 – © Società Italiana di Fisica / Springer-Verlag 2004

Abstract. The quadrupole interaction of high-spin isomers in ¹⁹³Pb implanted into solid Hg cooled at a temperature T = 170 K has been investigated by the time-differential perturbed γ -ray angular-distribution method. Spectroscopic quadrupole moment values of $|Q_s| = 0.22(2)$ eb and 0.45(4) eb have been deduced for the $21/2^-$ and $33/2^+$ three-neutron states, respectively. A much higher value $|Q_s| = 2.84(26)$ eb has been determined for the $29/2^-$ isomer, the band head of a magnetic rotational band.

PACS. 21.10.Ky Electromagnetic moments -27.80 + w $190 \le A \le 219$

The neutron-deficient Pb nuclei exhibit a rich variety of structures. Spherical states associated with the Z = 82shell closure are coexisting at low energies with deformed states involving proton particle-hole intruder excitations across the closed shell. Particular interest has attracted the observation of regular bands with a rotational-like pattern involving sequences of enhanced magnetic dipole transitions which were interpreted as a novel rotational mode, the magnetic rotation [1]. The M1 bands in Pb isotopes are based on high-spin proton excitations into the $h_{9/2}$ and $i_{13/2}$ orbitals coupled to neutron-hole excitations in the $i_{13/2}$ shell with a perpendicular orientation of the orbitals near the band head. This coupling has been recently confirmed in the case of the $T_{1/2} = 9$ ns, $I^{\pi} = 29/2^{-}$ magnetic rotational band head in ¹⁹³Pb by the q-factor measurement [2]. Angular momentum in the bands is gained by the shears mechanism that involves a simultaneous re-orientation of the proton-particle and neutron-hole angular momenta into the direction of the total angular momentum [3].

Static quadrupole moments are known to provide direct fingerprints for nuclear shape coexistence. In the Pb nuclei these moments were systematically investigated for one- and two- neutron states [4] and their values are pointing to almost spherical shapes. Recently, the quadrupole moments of the 11⁻ isomers in ^{194,196}Pb, described by the proton intruder $(h_{9/2}i_{13/2})$ configuration, have been measured [5,6]. The derived values (*e.g.*, $|Q_{\rm s}|(11^{-}, {}^{196}{\rm Pb}) = 3.41(66)$ eb) exceed by about an order of magnitude the values of the neutron states, indicating an increased collectivity [7]. In the present work we report on static quadrupole moment measurements for high-spin isomeric states in ¹⁹³Pb. The investigated states were the 9 ns 29/2⁻ magnetic rotational band head described by the $\nu(i_{13/2}^{-1}) \otimes \pi(h_{9/2}i_{13/2})_{11^{-}}$ configuration [2], as well as the 22 ns 21/2⁻ and 135 ns 33/2⁺ states involving threeneutron excitations [8].

The quadrupole interaction (QI) of the isomeric states in ¹⁹³Pb has been studied in the electric-field gradient (EFG) of the polycrystalline lattice of solid Hg by applying the pulsed-beam time-differential perturbed angulardistribution (TDPAD) method. The experiment has been carried out at the XTU-Tandem of Laboratori Nazionali di Legnaro. The states of interest were populated and aligned in the ¹⁷⁰Er(²⁸Si, 5n) reaction with a 143 MeV ²⁸Si beam having a pulse width of 1.5 ns at a repetition

^a e-mail: bujor@ifin.nipne.ro

Fig. 1. Modulation patterns resulting from the quadrupole interaction of high-spin isomeric states of 193 Pb in solid Hg at a temperature of 170 K. The excitation energies of the isomers are relative to the energy of the $13/2^+$ long-lived isomer.

period of 800 ns. The excited ¹⁹³Pb nuclei recoiled out of the 0.5 mg/cm² ¹⁷⁰Er foil into a solid 0.2 mm Hg layer mounted on a Cu cold finger held at a temperature T = 170 K. Planar and large-volume Ge detectors were used for detecting the γ -rays. In off-line analysis of the list-mode stored data, background-subtracted time spectra gated by various γ -rays de-exciting the isomers were created for each detector. The quadrupole interaction results in a modulation pattern which is superimposed on the exponential decay of the γ -ray time spectra. Following the standard procedure in TDPAD experiments [9]

the quadrupole modulation spectra are obtained from the normalized time spectra of the detectors placed at 0° and 90° with respect to the beam direction. The QI pattern depends on the spin and the quadrupole coupling constant $\nu_Q = Q_{\rm s} V_{zz} / h$, where V_{zz} is the axially symmetric EFG strength. The quadrupole frequency decreases quadratically with the spin I and, for a half-integer spin, is given by $\omega_0 = 3\pi\nu_Q/I(2I-1)$. Due to the high spin value and short lifetime of the investigated isomers, in the present experiment it was not possible to evidence the full quadrupole period $T_0 = 2\pi/\omega_0$ and only the structure at the beginning of the modulation patterns could be observed. Examples of quadrupole interaction spectra corresponding to selected γ -rays are illustrated in fig. 1. The deduced values for the quadrupole coupling constant were 1203(90) MHz, 91(7) MHz and 191(14) MHz for the $29/2^{-}$, $21/2^{-}$ and 33/2⁺ states, respectively. With an EFG calibration of V_{zz}(PbHg) = 17.4(9) × 10²¹ V/m² at T = 170 K, obtained by using data from ref. [10], absolute values of spectroscopic quadrupole moments for the high-spin isomers in ¹⁹³Pb have been derived as $|Q_s|(21/2^-) = 0.22(2)$ eb, $|Q_{\rm s}|(33/2^+) = 0.45(4)$ eb and $|Q_{\rm s}|(29/2^-) = 2.84(26)$ eb. Note that the small quadrupole moments determined for the $21/2^-$ and $33/2^+$ states are similar to the values reported for $13/2^+$ one-neutron and 12^+ two-neutron states in light Pb nuclei [4]. Rather spherical shapes are therefore inferred for the $21/2^{-}$ and $33/2^{+}$ isomeric states described by three-neutron configurations. A much larger $|Q_s|$ value was determined for the $29/2^-$ dipole band head which involves the coupling of the $(i_{13/2}^{-1})$ neutron state with the more deformed $(h_{9/2}i_{13/2})_{11^-}$ proton state. This is the first static quadrupole moment reported for a magnetic rotational band. The present results are thus providing evidence concerning shape coexistence for three-particle excitations in the neutron-deficient Pb region.

The authors would like to thank the staff of the XTU-Tandem of LNL for the high quality of the delivered pulsed beam. D.L.B. acknowledges scholarships of DWTC-Belgium and NATO. G.N. and K.V. are post-doctoral fellows of the FWO-Vlaanderen, Belgium. The Romanian participants were supported by the Romanian Ministry of Education and Research in the frame of CERES Programme under Contract No. 81/2001. Support through the EU TMR Programme under Contract No. HPRI-CT-1999-00083 is acknowledged.

References

- 1. S. Frauendorf, Z. Phys. A 358, 163 (1997).
- 2. S. Chmel et al., Phys. Rev. Lett. 79, 2002 (1997).
- 3. S. Frauendorf, Nucl. Phys. A 557, 259c (1993).
- R.B. Firestone, *Table of Isotopes*, (John Wiley, New York, 1998) Appendix E. Nuclear Moments.
- 5. K. Vyvey et al., Phys. Rev. C 65, 024320 (2002).
- 6. K. Vyvey et al., Phys. Rev. Lett. 88, 102502 (2002).
- 7. K. Vyvey et al., Phys. Lett. B 538, 33 (2002).
- J.M. Lagrange et al., Nucl. Phys. A 530, 437 (1991).
 H. Frauenfelder, R.M. Steffen, in Alpha-, beta- and gammaray spectroscopy, edited by K. Siegbahn, Vol. II (North-Holland, Amsterdam, 1965).
- 10. H.-E. Mahnke et al., Phys. Lett. B 88, 48 (1979).